Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin.
نویسندگان
چکیده
The vasodilator-stimulated phosphoprotein (VASP) is a major substrate for cyclic nucleotide-dependent kinases in platelets and other cardiovascular cells. It promotes actin nucleation and binds to actin filaments in vitro and associates with stress fibers in cells. The VASP-actin interaction is salt-sensitive, arguing for electrostatic interactions. Hence, phosphorylation may significantly alter the actin binding properties of VASP. This hypothesis was investigated by analyzing complex formation of recombinant murine VASP with actin after phosphorylation with cAMP-dependent kinase in different assays. cAMP-dependent kinase phosphorylation had a negative effect on both actin nucleation and VASP interaction with actin filaments, with the actin nucleating capacity being more affected than actin filament binding and bundling. Replacing VASP residues known to be phosphorylated in vivo by acidic residues to mimic phosphorylation had similar although less dramatic effects on VASP-actin interactions. In contrast, phosphorylation had no significant effect on VASP oligomerization or its interaction with its known ligands profilin, vinculin, and zyxin. When overexpressing VASP mutants in eukaryotic cells, they all showed targeting to focal contacts and stress fibers. Our results imply that VASP phosphorylation may act as an immediate negative regulator of actin dynamics.
منابع مشابه
Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) regulates its interaction with actin
متن کامل
PKCdelta regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation.
Protein kinase Cdelta (PKCdelta) has been shown by pharmacologic approaches to negatively regulate collagen-induced platelet aggregation. Here we addressed the molecular and cellular mechanisms underlying this negative regulation. Using PKCdelta-/- platelets, we show that the mechanism did not involve altered inside-out signaling to integrin alpha(IIb)beta3 and did not affect early signaling ev...
متن کاملRab13 regulates PKA signaling during tight junction assembly
The GTPase Rab13 regulates the assembly of functional epithelial tight junctions (TJs) through a yet unknown mechanism. Here, we show that expression of the GTP-bound form of Rab13 inhibits PKA-dependent phosphorylation and TJ recruitment of the vasodilator-stimulated phosphoprotein, an actin remodelling protein. We demonstrate that Rab13GTP directly binds to PKA and inhibits its activity. Inte...
متن کاملContribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization.
The Listeria model system has been essential for the identification and characterization of key regulators of the actin cytoskeleton such as the Arp2/3 complex and Ena/vasodilator-stimulated phosphoprotein (VASP) proteins. Although the role of Ena/VASP proteins in Listeria motility has been extensively studied, little is known about the contributions of their domains and phosphorylation state t...
متن کاملRegulation of vasodilator-stimulated phosphoprotein phosphorylation and interaction with Abl by protein kinase A and cell adhesion.
Members of the vasodilator-stimulated phosphoprotein (VASP) family are important regulators of actin cytoskeletal dynamics whose functions and protein-protein interactions are regulated by phosphorylation by the cAMP-dependent protein kinase (PKA). Herein, we show that phosphorylation of VASP is dynamically regulated by cellular adhesion to extracellular matrix. Detachment of cells stimulated P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 40 شماره
صفحات -
تاریخ انتشار 2000